2.1 The Logistic Equation

We learn

- what the logistic equation is
- how to solve it
- features of the equation in modeling population growth
- birth and death rates
- the limiting population = carrying capacity

Recall the equation that gives exponential population growth:

$$
P^{\prime}(t)=k P, \quad P(t)=B e^{k t}
$$

Here $P(t)$ is the size of a population at time $t$
We can interpret this in terms of the

- birth rate $\beta=0.03$ means 3 tables are born to 100 people in unit time
- death rate $\delta=$ the proportion that che in unit tame.

We get an equation

$$
\frac{d P}{d t}=\beta P-\delta P \simeq(\beta-\delta) P
$$

$\beta, \delta$ might not be constant.
The logistic equation is $\frac{d P}{d t}=k P(M \sim P)$ $\beta-\delta=k(M-p), M$ is a constant, Interpretations of the logistic equation:

1. $\frac{d P}{d t}$ is proportional to M-P ar wellai $P_{1}$

There is a limit $M$ to population size As $p$ approaches $\mu(\beta)-\delta$ becound Sural.
2. We model bini rate as $\beta_{0} \sim \beta_{1} P$

$$
\begin{aligned}
& \frac{d P}{d t}=\left(\beta_{0}-\beta_{1} P-\delta\right) P=\left(\beta_{0}-\delta\right) P-\beta_{1} P^{2} \\
& \beta_{1}=k \quad k M=\beta_{0}-\delta
\end{aligned}
$$

Page 82 question 7.
Separate the variables and use partial fractions to

$$
x=\frac{7 D e^{28 t}}{1+D e^{28 t}}=\frac{7}{E e^{-28 t}+1} \quad E=\frac{-4}{11}
$$ solve the IVP. Sketch the graphs of several solutions. Highlight the indicated one.

$$
\begin{aligned}
& d x / d t=4 x(7-x), x(0)=11 \quad \frac{d x}{d t}=4 x(7-x) \\
& \int \frac{d x}{x(7-x)} d x=\int 4 d t, \left.\int \frac{1}{7}\left(\frac{1}{x}+\frac{1}{7-x}\right) d x=\int 4 d t \right\rvert\, \\
& \frac{1}{7}(\ln x-\ln (7-x))=4 t+C \\
& \ln \frac{x}{7-x}=28 t+7 C \\
& \frac{x}{7-x}=e^{28 t+7 C}=D e^{28 t}, D=e^{7 C} \\
& x=(7-x) D e^{28 t}, x\left(1+D^{28 t}\right)=70 e^{28 t} \\
& x=\frac{7 D e^{28 t}}{1+D e^{28 t}} \quad x(0)=11 \\
& 11=\frac{7 D}{1+D} \quad 11+11 D=7 D, 4 D=-11
\end{aligned}
$$

7 is the carrying capacity.


Partial fractions: we show $\frac{1}{x(7-x)}=\frac{1}{7}\left(\frac{1}{x}+\frac{1}{7-x}\right)$

$$
\begin{aligned}
& \text { Put } \frac{1}{x(7-x)}=\frac{A}{x}+\frac{B}{7-x}=\frac{(7-x) A+x B}{x(7-x)} \\
& =\frac{7 A+(B-A) x}{x(7-x)} \text { so } 7 A=1 \quad B-A=0 \\
& B=A=\frac{1}{7} .
\end{aligned}
$$

## Pre-class Warm-up!!!

Can you remember what the logistic equation is? Which of the following is it?
a. $\mathrm{dP} / \mathrm{dt}=\mathrm{kP}(\mathrm{M}-\mathrm{P})$
b. $\mathrm{dP} / \mathrm{dt}=(\mathrm{k}-\mathrm{M}) \mathrm{P}$
c. $\mathrm{dP} / \mathrm{dt}=\mathrm{kP}(\mathrm{P}-\mathrm{M})$
d. $\mathrm{dP} / \mathrm{dt}=\mathrm{P} \wedge 2(\mathrm{k}-\mathrm{M})$
e. None of the above.

Page 82 question 6
Solve $d x / d t=3 x(x-5), x(0)=2 \quad($ or $x(0)=6)$ Draw graphs etc.
How can we interpret this equation?

$$
\begin{aligned}
& \int \frac{d x}{3 x(x-5)}=\int \frac{1}{15}\left(\frac{1}{x-5}-\frac{1}{x}\right) d x=\int d t \\
& \frac{1}{15}(\ln (x-5)-\ln (x))=\frac{1}{15} \ln \left(\frac{x-5}{x}\right)=\ln \left(\frac{x-5}{x}\right)^{\frac{1}{15}} \\
& =t+C \\
& \left(\frac{x-5}{x}\right)^{\frac{1}{15}}=e^{t+C}=B e^{t} \quad B=e^{C} \\
& \frac{x-5}{x}=B^{15}\left(e^{t}\right)^{15}=D e^{15 t} \quad x\left(1-D e^{15 t}\right)=5 \\
& x-5=x D e^{15 t}, x
\end{aligned}
$$

Partial fractions:

$$
\frac{1}{3 x(x-5)}=\frac{1}{15}\left(\frac{1}{x-5}-\frac{1}{x}\right)
$$

$x=\frac{5}{1-D e^{15 t} \quad \begin{array}{l}\text { What about the } \\ \text { initial values? }\end{array}}$


Interpretation:
Doomsday or extinction.

Other birth and death rates: Page 83 question 11
A lake is stocked with fish. The birth rate and death rate are both inversely proportional to $\sqrt{ } P$ (a) Show that $P(t)=\left(\frac{1}{2} k t+\sqrt{ } P_{0}\right)^{2}$ for some constant k . (b) If $P(0)=100$, and after 6 months there are 169 fish in the lake, how many will there be after 1 year?

